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Multipole Mixtures i n  the Mdssbauer Effect 

J O T ,  Dehn, J , G ,  Marsolf and JOB, Salmon 

FUNS, Woodstock College, Woodstock, Maryland 

A theory of multipole mixtures applicable t o  resonance 

absorption is developed, The method used is an extension of 

Malus' law t o  include e l l i p t i c a l l y  polarized multipole 

mixtures. The case of dipole-quadrupole mixtures is  t reated 

i n  d e t a i l  as  a means of  measuring EZ/Ml mixing r a t i o s  and 

checking time-reversal invariance i n  cer ta in  nuclei, 
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INTRODUCTION 
1 Frauenfelder and h i s  co-workers have developed and applied the 

theory of e l l i p t i c a l  polarization i n  the Mdssbauer effect .  I n  the i r  

paper (referred t o  hereafter as P) a method of complex vector parameter- 

iza t ion  was used t o  derive an expression f o r  the transmission pattern, 

ZE = II'-% (1) 

such that the  factor  I, which is  proportional t o  t h e  in tens i ty  of the  

emitted radiation, can be factored out on the  r igh t  side of equation (1). 

Then c , which i s  proportional t o  the absorption cross section, may be 

found expl ic i t ly  i n  terms of the Euler angles 4 , p  f o r  the  oriented 

emitter and d',p f o r  the  oriented absorber. The angular factor ,  
I 

A 8 , i s  given i n  Table V of F f o r  pure dipole and quadrupole 

radiation and f o r  varibus values of M and MI, the changes i n  magnetic 

quantum number f o r  emitter and absorber respectively. However, t h i s  

method proved too complicated fo r  a convenient treatment of multipole 

mixtures. It i s  the purpose of the present paper t o  develop the theory 

of multipole mixtures by a more d i rec t  method. 

TREORY 
L e t  us begin with a modified form o f  equation (38) i n  F f o r  the 

e l e c t r i c  f i e l d  vector, 

where a and be'? a re  products of the  appropriate Wigner 35 symbols 

and reduced matrix elements 31 , as  explained by F. We can choose a,  b 
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and the r e l a t ive  phase of the nuclear matrix elements, 

numbers. The angular dependence i s  expressed by the vector 

, t o  be r e a l  

where the upper signs refer t o  e l ec t r i c  radiation and the lower signs to  

magnetic radiation. We shall be concerned with the case of most physical 

in te res t ,  namely, a mixture of magnetic dipole ( L  = 1 )  and e l ec t r i c  

quadrupole (L =2) radiation. I n  the l a s t  equation, 

measured about the axis of nuclear orientation, 13 i s  the angle between 

this axis and the a x i s  of observation, while o< is the  azimuthal angle 

i s  the  M e r  angle 

measured about the axis of observation. The complex un i t  vectors are, 

j r ,  =; 7 (2 )/G (4) 
A, 4 

so that Tp 3v = $9, w h i l e  the rotat ion matrix elements d 2 4  a r e  

given i n  Table I1 of F, reproduced here a s  Table I. 

The quantity we a re  interested i n  i s  

As a first s tep it i s  convenient to  compute the complex numbers l i s t e d  

in  Table I1 by using equation (3) .  From Table I1 and equation ( 5 )  with 

a o r  b s e t  equal t o  zero, w e  can derive the formulas given i n  F. For 

example, with b = b' = 0, w e  may compute r&=l&:(").e:m>la a- 

which appears as  t i e  l a s t  eiitrj ia Table ILL, If i n  addition we l e t  

a = a ' ,  &=A 

f ind  the in tens i ty  squared and f ina l ly  the in tens i ty  

/ 1 

p=e , and use the upper signs i n  this formula, we 
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We may divide by this quantity t o  find 

and divide again by I' t o  f ind 

which appears a s  the first ( o r  fourth) entry i n  Table V of F. We have 

omitted subscripts and arguments in equations (7) and (8) t o  indicate 

t h e i r  general appl icabi l i ty  even t o  multipole mixtures. 

Before proceeding further,  l e t  us derive two auxiliary formulas 

which m y  be used t o  f i l l  out Table 11. The f irst  is  hardly more than 

a rearrangement of the quantit ies involved, a s  follows: 

a-s E F ( M ) * E ' ( M ' )  4-t = [E & S  ( M ) z r ( M ' ) ] *  = lJt(M')s:(M)I: ( 9 )  

1 
where subscript x denotes the operation o ( e  .(: /s&>f':#*r 
This formula is convenient fo r  finding such quantit ies as  E*(M)sL(M') 

from E * ( M ' ) S i ( M ) .  The second formula is 
-S 

-t 
*S E*(-M)z;(+~~' = ( - i l n  [ F ( M ) ~ ; ( ~ M '  & S  )I* (10) 

where n = M + M' = (lo&,) and Sst is the Kronecker delta. It is useful f o r  

obtaining U S  E * ( - M ) ; E : ( P ' )  froml3*,(M)s;(?M'). We may prove it by using 

equation (3 )  i n  equation (10) and equating t h e  coefficients of the ex- 

ponentials i n  the resul t ing expression. Thus we must show t ha t  

and 

(12 j 
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where w e  have ignored the symbol fo r  the complex conjugate since the 

dk) a r e  real .  These re lat ions follaw from the equation 
I -- 

which can be obtained from an examination of Table I or, i n  the general 

case, from equation (4.19) of Rose . 2 

By using equations (9) and (10) to  complete Table I1 we may now 

construct Table I11 from equation (5). I n  the l a s t  three en t r ies  of 

Table 111 one or  both of the dipole components i s  missing, so t ha t  two 

of these formulas a re  only partial mixtures while the l a s t  i s  pure quadrupole. 

However, they are  included f o r  the sake of completeness. I n  order t o  f i l l  

out Table I11 we can employ two auxiliary transformations, To f ind 

I z(M,M') from I ~ ( M ~ , M ) \ ,  we use 

that. is, exchange corresponding primed and unprimed quantitihs. To f ind 

IZ(-M,W) from IC(M,SI'), we use 

(a,a',b,b', y,?') C-, (a,a',-b,-b',- Q,- 9') (15) 

with the M e r  angles unchanged. These transformations may be proved 

by writ ing out equation ( 5 )  f o r  the quant i t ies  involved and using 

equations (9) and (10) t o  transform one i n t o  the other, The transforma- 

t i on  

not appear i n  the final result IZ. 

/ i s  not included i n  equation (14) since t h i s  angle does 

We may a lso  compute the in tens i t ies  given i n  Table I V  from the 

first and th i rd  en t r ies  i n  Table I11 by using t he  upper s i p s  arid 

l e t t i n g  a = a', b = bs,  A d '  and P=p/ . T h i s  gives us IZ1(0) and 
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IZ1(+1) when we take the square root. If we use transformation (15) t o  

find IZ ( -l,a), we may then obtain Ia(- l )  by the same procedure. 

Similarly, from the l a s t  entry i n  Table 111 we obtain 12(22) a s  i n  

equation (6) 
9- --? Finally, w e  note from equation (3) t ha t  e l ec t r i c  and magnetic multipoles 

4 
d i f f e r  o n l y  i n  the sign of?-, . A s  a r e su l t  of this, Tables If, 111, and 

IV are the same f o r  a magnetic quadrupole-electric dipole mixture a s  f o r  

the e lec t r i c  quadrupole-magnetic dipole mixture we have been describing, 

although only the l a t t e r  i s  of much physical interest .  

MPERIMENTAL POSSIBILITIES 

Angular,correlation measurements have been frequently used t o  

determine the mixing r a t i o  a/b and the r e l a t ive  phase y 3 .  A t  first 

allowance w a s  made f o r  the poss ib i l i ty  t ha t  the r a t i o  i s  a complex 

4 

number, a/(bt&a>. Hawever, Lloyd 5 showed tha t  the assumption of time- 

r e v e r s a  invariance limits ? t o  the values 0 o r e .  Since the discovery 

of violat ions of the va l id i ty  of par i ty  conservation, a t tent ion has 

been turned toward experimental methods of checking time-reversal 

invariance also 6-8 9 More recently, the M8ssbauer e f fec t  has been proposed 

a s  a technique f o r  polarizing the daughter nucleus i n  an angular correla- 

t ion  experiment involving time-reversal and parity,  and has been used 

i n  a coincidence experiment t o  determine the EZ/Ml mixing r a t i o  of the 

123-keV t rans i t ion  i n  Fe57 . 

10 

The r e su l t s  of our papui' right be used tc! ?et.emine a/b and c? 

f o r  nuclei which show the Massbauer effectn and are  known t o  emit 
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mixed E2/Ml radiation". Although only a limited number of such nuclei  

a re  known, and the Mksbauer e f fec t  requires the ground s t a t e  t o  be the 

final s t a t e  of a low energy (4150-keV) t ransi t ion,  s t i l l  Xeeman 

experiments using only the Messbauer e f fec t  can serve as  a complement 

t o  the techniques described above. O f  par t icular  in te res t  would be a 

more accurate check of time-reversal invariance f o r  such nuclei. 

CONCLUSION 

The theory of dipole-quadrupole mixtures has been presented i n  

d e t a i l  f o r  emitter and absorber nuclei oriented i n  magnetic f i e l d s  

so that separated Zeeman l ines  appear. The method used is  a t rad i t iona l  

one since it amounts t o  an extension of Malus' l a w ,  discussed i n  most 

t ex t s  on optics. Both & (the "polarizer") and 6' ( the  "analyzer") a r e  

projections of the e l ec t r i c  vectors on the plane of observation, the 

rry 

4 4  I R  a 
3 , )  q-1 or A, a plane. Malus' cbit (d-pc') law holds f o r  the  case 

of plane-polarized radiation, M = M i  = U. it is obtained >y projeetic;: 

one vector on the other, squaring the magnitude of the r e su l t  and 

dividing by the  in t ens i t i e s  as  i n  equation (8). We have extended t h i s  

method t o  include e l i p t i c a l l y  polarized radiation f o r  multipole 

mixtures and the pure multipoles which a re  special  cases of these mixtures. 

Since equations (3) and (13) are  perfectly general, the method may be 

extended t o  multipole mixtures of any order. Possible use of these 

r e su l t s  i n  experiments has also been b r i e f ly  described. 



Table I. Reduced rotation matrix elements, d (L 1 
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f o r  dipole and quadrupole cases. 
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